

The Celts: Dirty Barbarians... or Cleanest Chemists in Europe?

You know, the Romans and Greeks *loved* calling the Celts "dirty, filthy barbarians." But let's take a closer look at that, shall we? 😉

1. Naked warriors covered in blue paint - Yes — Celtic warriors (both men and women) sometimes fought **naked**, swirling with blue woad designs.

But that wasn't because they were dirty...
It was **intimidation psychology** AND **body-art chemistry**. (And honestly — imagine the confidence! (a)

🔨 2. They kept enemies' heads as souvenirs

True — they did take heads. But this wasn't "filthy."

It was **ritual**, **respect**, and a bit of "please don't invade us again."

(Still gross... but not unhygienic! ⊖)

♥ 3. They peed on wounds to clean them

Yes — they really did. And guess what? They weren't being disgusting... They were being **scientific**!

- Urea kills bacteria
- It cleans wounds
- Ammonia helps prevent infection

So, the Celts were doing **first-aid chemistry** long before hospitals existed.

And now... the twist!

After battle, my brave Celtic warrior Aiden and his warrior band come home covered in:

- woad paint
- 🕨 blood 🍑
- mud ♥
- sweat 😽
- and a little medicinal pee

Before they can feast or party... They need a GOOD WASH!

But here's the best bit: The Celts were washing with SOAP long before the Romans even knew what soap was!

Romans scrubbed themselves with oil and sand. Oil. And. Sand. That's not bathing — that's a **marinade**. 🥩

So, tell me again... Who were the real dirty animals?!

🤚 From Fire and Fat to Foam

In the Chemistry and the Celts show one of my Celtic chemists makes their own soap using the melt-and-pour **process** — a modern and safe way to recreate what the Celts were doing thousands of years ago!

Long ago, when wood ash (rich in potassium carbonate) mixed with animal fat, something magical happened — saponification.

- 🦙 When the Celts leached wood ash with water, they made a weak lye containing potassium hydroxide (KOH) — a stronger alkali than potassium carbonate.
- This alkali reacted with animal fats to create soap, which lifts dirt and grease away when mixed with water.
- 🦊 Lye today is often sodium hydroxide (NaOH), but the Celts used potassium-based lye, giving them a softer, creamier soap than modern caustic soda soaps.

They may not have written formulas, but they knew it worked. Their soap cleaned clothes, hair, and even made moustaches stand proudly before battle!

Celtic Beauty and Hygiene

Pliny the Elder wrote that Celtic soap was used to "redden their hair and make it stand upright."

Their soap was a **soft paste** made from fat and ashes, scented or coloured with:

- Chamomile 🏶
- Rosemary 🌿
- Woad 💙

Soap wasn't just cleaning — it was **style**, **pride**, **and status**.

The Chemistry of the Celts — A Science2Life Show by Scientific Sue Full of experiments, facts, and fun ways to bring Science2Life! © 2025 Science2Life | www.science2life.com | @scientificsue

न The Science Behind the Suds

In the Celtic cauldron:

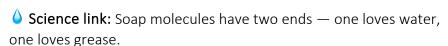
- Fat/oil = long molecules called fatty acids
- Wood ash = potassium carbonate → potassium hydroxide when leached

Heat them together and you get

soap + 🔰 glycerol

That's exactly how modern solid and liquid soaps are made!

Soap-Making, Celtic Style


When soap is made on stage with me, my Celtic Chemist followed in ancient footsteps! 🤵 🕱

They:

- Used a melt-and-pour base 1.
- Added honey 😇 2.
- Decorated with coloured crushed rock and herbal oils ** 3.

When you rinse, they grab the dirt and it is washed away with the water.

That's **emulsification** and **polarity** — powerful chemistry hidden in a humble bar of soap.

So next time you lather up...

You're bringing a little Celtic chemistry to life!

What Do "Emulsification" and Polarity Actually Mean?

Polar and Non-Polar – Why Oil and Water Don't Get On

Water is a **polar** liquid — its molecules have tiny areas of positive and negative charge. Oils and greases are **non-polar** — their molecules have no charged areas at all.

Because of this, polar water and non-polar oil simply don't mix.

The Chemistry of the Celts — A Science2Life Show by Scientific Sue Full of experiments, facts, and fun ways to bring Science2Life! © 2025 Science2Life | www.science2life.com | @scientificsue

Enter Soap – A Molecule with Two Personalities

Soap molecules are brilliantly designed with two very different ends:

- A hydrophilic (water-loving) head this end is ionic and *polar*, so it mixes well with water.
- A hydrophobic (water-hating) tail this long carbon chain is *non-polar*, so it mixes well with oil and grease.

This special structure allows soap to link water and grease — two substances that normally avoid each other.

How Soap Actually Lifts Dirt — Micelles!

When soap meets oily dirt, millions of soap molecules surround each droplet. Their hydrophobic tails bury themselves in the grease, while the hydrophilic heads stick out into the water.

These tiny clusters are called **micelles**.

Once trapped inside micelles, the oily dirt becomes suspended in water — a process called **emulsification** — which allows it to be rinsed away. Soapy water looks cloudy because these micelles scatter the light!

That's emulsification and the science of polar vs non-polar chemistry — powerful Celtic chemistry hidden in a humble bar of soap.

So next time you lather up...

You're bringing a little Celtic chemistry to life!

The Chemistry of the Celts — A Science2Life Show by Scientific Sue *Full of experiments, facts, and fun ways to bring Science2Life!*© 2025 Science2Life | www.science2life.com | @scientificsue